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3\ ABSTRACT

T his paper contains a variaticnal treatment of the Ambrosetti-Prodi
problem, including the superlinear case. The main result extends previous
ones by Kazdan-Warner, Amann-Hess, Dancer, K. C. Chang and de Figueiredo. The
required abstract results on critical point theory of functionals in Hilbert

space are all proved using Ekeland's variational principle. These results

apply as well to other superlinear elliptic problems provided an ordered pair

of a sub~ and a supersolution is exhibited. _
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SIGNIFICANCE AND EXPLANATION

Semilinear elliptic boundary value problems of the type
(*) -&u = g{u) + f(x) in I, u=0 on 23N

N

where § 1is some bounded domain in R and g : R+ R and f : 2 + R are

some given functionsg, have no solution in general if

(**) lim sup glu) < A1 < lim inf glu) R
ur-® u u+t+e u

where A, is the first eigenvalue of =4 in H;. However in 1972,
Ambrogetti and Prodi observed a very interesting phenomenon concerning this
class of problems. Namely, they showed that there is a manifold M in
co'a(ﬂ) which disconnects Co'a(ﬂ) into two open sets O, and 0, such
that if f € Oy, problem (*) has no solution, if f € M problem (*) has
exactly one solution, if f € O, problem (*) has exactly two solutions.
Their result was obtained under very stringent conditions on g. Namely,
convexity, asymptotically linear growth at #%, and the second limit in (**)
being less than the second eigenvalue of =A in H;. In subsequent years
there has been an increasing effort to understand the actual role of these
assumptions in this phenomenon. The present paper is a contribution in this

direction. It is seen that as far as existence (or nonexistence) is concerned

these assumptions are not essential. what matters is the crossing of the

first eigenvalue A1 as stated in (**). The previous results in this subject
by Amann and Hess and by Dancer use topological degree to obtain the second
solution. For that purpose de Figueiredo used a variational argument
obtaining a more general iresult. The first solution is always obtained in the
preceding works by the method of monotone iteration, as does Kazdan and
Wwarner. In the present paper we obtain much more complete results proceeding

solely by variational methods.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




A VARIATIONAL APPROACH TO SUPERLINEAR ELLIPTIC PROBLEMS
Djairo G. de Figueiredo®* and Sergio Soliminit*
INTRODUCTION.

The main objective of the present paper is to give a variational treatment of the
superlinear Ambrosetti-Prodi problem and to prove the existence of two solutions for
certain values of the parameter. In this process we produce interesting and simple proofs
of some abstract results using Ekeland's variational principle [1]. Some of these abstract
results, namely Propositions 3 and 5, are known in the literature, where they are proved
via the deformation lemma, c.f. Hofer (2] and Rabinowitz [3]. Our results on the
superlinear Ambrosetti-Prodi problem extend previous theorems of Dancer [4], K. C. Chang
{51 and one of the authors [6].

Let 1 be a smooth bounded domain in R, N > 2. Let g : f X R+ R be a function

satisfying the following conditions:

(gl) g is a c1-£unction,

(g2) 1lim sup L1Xe2) A, < lim inf gtx,s)
[ mtad 8 gr+®

(g3} 1lim 91-’-‘-:’—’ = 0, where 1< 0 ¢ (N+2)/(N-2) 4if N > 3

-5 ad 8
or 1 <o <= if N =2
(g4) 1lim ing 2LiXe8) ‘23‘:‘::;7’ >0, if N> 3 and (N41)/(N-1) < 6 € (N+2)/(N-2)
[ s g(x,s)

s
where 6 > 2 and G(x,s) = f g(x,E)dE .
0
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The statements about the limits above are supposed to hold uniformly for x € fi. The
limits in (g2) could assume value =% or +=, respectively, on the whole of § or on
subsets of positive measure. In (g2), X1 denotes the first eigenvalue of the eigenvalue
problem -Au = Au in @&, u=0 on 303. We denote by ¢ the eigenfunction corresponding
to X1 and such that ¢ >0 in Q and [ 02 = 1. Let 01 = {ue Cu(i-l) t [ ue = 0}. Any
function f e ca(f.l) can be uniquely decomposed as f = t¢ + h, where ¢t € R and

he 01. We shall look at the parametrized family of Dirichlet problems:

(Pt) ~8u = g({x,u) + té¢ +h in Q, u=0 on 23,

and prove the following result.

Theorem t. Aasume (g1), (g2), (g3) and (gd). Then given h € Q'L, there exists a t € R

2, -
(depending on h), such that problem (Pt) has at least two C u--olut.ionl if t <t, and

no solution if ¢t > E Moreover, there is at least one solution for t = t-: provided we

agsume the following additional condition on g, in the case that N >3 and the o0 in

(g3) 18 > (N+1)/(N-1):

(g5) there is a function a : @ + R, with a(x) >0 if x e @, such that

1im s.(_&;_-.). ~ a(x)

grte s

for some (N+1)/(N-1) < a < (N+2)/(N-2).

Remarks. 1) Condition (g2) characterizes (Pt) as a boundary value problem of the
Ambrosetti Prodi type. 2) Condition (g3), together with a convenient modification of the
nonlinearity gi(x,s) for s < 0, allows us to treat (Pt) by variational techniques. In
this way we obtain its solutions as critical points of an associated Fuler-Lagrange
functional. 3) Condition (g4), in conjunction with (g2) and (g3) are used to prove that
such a functional satisfies the Palais-Smale condition. 4) Conditfion (g5) implies an a
priori bound on the solutions of (P,) for h fixed and t in a compact set. Observe that
in the cases N = 2 and N > 3 with 1 ¢ 0 € (N+1)/(N-1) an a priori bound on solutions
follows from the other hypotheses of the theorem. We remark that (g5) is a strong

restriction; once it is assumed, then (g3) and (g4) are automatically fulfilled for the

2=




corresponding ranges of N and 0. The a priori bounds mentioned above are consequences
of similar results for positive solutions of certain second order elliptic equations.

Indeed, just cbserve that (Pt’ has a minimal solution u, and that any other solution u

may be written as u = u  + v, where v 18 a positive solution of an appropriate second
order elliptic equation. The bound on the v's followa from the work of Gidas-Spruck [7]
in the case when (g5) is assumed. In the other cases the estimates of Brézis-Turner (8]
will suffice.

The vaper ia organized as follows. In the first part we recall known results and
prepare our differential problem (Pt) to be treated by variational methods. In the second
part we state and prove some abstract results, which will be used in the next section.
Finally in the third part, we show how the abstract theorems of the previous section are
used to prove results on the existence of two solutions for some second order elliptic
problems. There the basic assumption is that these problems have & strict subsolution w
and a strict supersolution W, with ® € W. In particular these results imply Theorem
1. The solutions so obtained are in H;. However in view of the regularity assumptions
on g and Q made above, their regqularity follows either by standard bootstrap arguments
or more sophisticate ones due to Brézis-Kato [9], see also [6].

The contents of this paper were presented by the first author at the AMS Summer

Institute on Nonlinear Functional Analysis and Applications in Berkeley (July 1983).
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1. VARIATIONAL FORMULATION. ’
We start with the following result which is essentially due to Kazdan-Warner (10].

Lesma 2, Assume (g1) and (g2), and let h € 01 be given. Then (i) there exists a t, enRr

such that (Pt) has no solution if ¢t > ty. (i1) For each given t € R there exists a

Cz'a‘funCtion W _, which is a strict suhsolution of (P,) and bounds from below all

t t

eventual supegsolutions of (Pt)' (i1i) There exists a t, @ R such that (Ptz) has a
strict supersolution w e cz'a(ﬁ).
2
1
From now on we agsume h € ¢ Dbe given and fixed. The set J of the t's such

that (Pt) has a supersolution is a halfline from -o, let t be the supremum of J. We

assert that if ¢t < ; then (P has a strict supersolution. Indeed, a supersolution of

)

problem (P:), with t < 2 <t, is a strict supersolution of problem (Pt)'

Hereafter let t < t be fixed. Our goal is to prove that (P,) has two solutions.
We remark at this point that the method of monotone iteration yields readily the existence
of one solution. This was the approach taken by Kazdan-Warner {10], and also used by
Amann-Hess [11], Dancer (4], Berestycki {12] and one of the authors [6] to obtain the first
solution (the minimal one) of the Ambrosetti-Prodi problem. The second solution was
obtained by degree arguments, in the case of (4], [11] and [12]), and by a variational
argument, in the case of [6]. In the present paper we proceed solely by variational
techniques, even for the first solution. In this way we are in the spirit of the work of
Hofer (2].

In order to formulate variationally our problem, we recall [see Lemma 2] that all

eventual solutions of (P are bounded from below by wt' We remark that is the

t) t
solution of the Dirichlet problem

-Amt - uwt “-C+td+h in Q, wt =0 on 3R,
where u < X' and C > 0 are chosen in such a way that g(x,8) » us ~ C for all x €
and 8 € R. [Such a lower bound on g exists as a consequence of (g2), cf. [6]). So w,
depends only on this lower bound for g(x,8) and consequently a modification of g
maintaining it produces the same wt' Thus we modify the nonlinearity g(x,s) for

s < min W , 8o as to preserve the inequality g(x,s) > us -C. The solutions of (P )

t
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with this modified nonlinearity are the same as the ones of the original problem. 1In
addition, we do this modification in such a way that the new g is still a c‘-function and
moreover g(x,s) > 0 for large negative 8 and g has linear growth as 8 +» -®. With
this new nonlinearity the functional ¢ below is well defined in H; and satisfies the
Palais-Smale condition, cf. [61]:

o = [ 21vu1? - six,u) - (e6 + hIu .




2. ABSTRACT RESULTS.

Let H be a real Hilbert space, with inner product <¢,*> and norm [feI. A

functional @ : H+ R of class C' is said to satisfy the Palais Smale condition if every

sequence (u,) in H, such that O(un) is bounded and 0'(un) + 0, 4is precompact. The
following result was a proposition proved by Hofer in (2] using the deformation lemma
adapted for closed convex subsets of a Hilbert space. We provide below a different proof.

1
Proposition 3. Let ¢ e C (H,R) satisfy the Palais Smale condition. ILet C be a closed

convex subset of H. Suppose that K = I - ¢' maps C into C and that & is bounded

below in C. Then there is wu, € C such that 0'(uo) =0 and inf ¢ = O(uo).
[od
Proof. By FEkeland's variational principle, given € > 0 there is “e € C such that

O(us) € inf & + € and
(@) © O(ue) < &(u) + etu - “cl' vuec.
Take in (1) u = (1 - tlu_+ tKu, with 0 € t € 1, and use Taylor's formula to expand
O(uE + tiku - uc)) about u . We then obtain
100w 1% < eelot(u )b + oft)
from which follows that IO'(uc)l € €, making t + 0. Finally use the Palais-Smale
condition to conclude that there exists u, € C such that u hd Uy for some sequence
€ » 0, The continuity of ¢ and &' completes the proof. m]
An operator T : H+ H is said to be of type s* if for every sequence w, - g (=

means weak convergence) such that 1lim sup(Tun,un - u) €0, it follows that u, >y

1
Proposition 4. let 9 eC (H,R) bhe such that &' is of type S+. Suppose that ¢ is

bounded below in a ball B. Then there exists vy € B such that O(VO) = inf & and
B

o' (vy) = xvo, with A < 0.

Proof. By Ekeland's variational principle, given € > 0 there exists Ve e B such that
O(VC) < inf & + € and

(2) i $v ) S Ov) +elv-vl, Vves.

Now let u € E be arbitrary and take in (2) v = vE + t(u - ve), with 0 < t € 1, Uuse

Taylor's formula to expand O(Vc + t(u - ve)) about Ve and obtain, making t *+ 0:

. - + - B .
(3) 0 < <% (ve)'u v€> ehu ve" VuesB

-6~




Next taking in (3) u = v,, where Vo is the weak limit of Ve for some sequence

€ + 0, and making € + 0, one ohtains 1lim sup <0'(ve),ve - v.><€ 0. Since %' is of

0
€+0
type s‘, it follows that Ve * vy We obtaln readily that O(VO) ~ inf ¢. On the other
B
hand, from (3) it follows that 0 < <0'(vo),u - vo) for all u € B. This implies that
there exists ) € 0 such that 0'(vo) - Avo. m]

The Mountain Pass Theorem of Ambrosetti-Rabinowitz [13] states that a functional
¢ e C‘(H,R), which satisfies the Palais-Smale condition and such that
(4) inf{®(uw) : tul = r} > max{®(0),d(e)} = a ,
where 0 ¢ r ¢ tel, has necessarily a critical point U, at the level
(S) c I inf max ®(y(t))

yer tefo,1)

where I = {y e CO([0,1],H) : Y{0) = 0, Y(1) = e} . Clearly c > a, which implies that
uy # 0 and u4 # e. What happens however if the ineguality in (4) is replaced by
equality? In this direction, Pucci~Serrin [14] observed that if there are numbers r

and R such that 0 ¢ r < R < fel, and

(6) inf{®(u) : r € lul < R} > max{9(0), &(e)} = a

then ¢ as defined in (5) is a critical value for ¢. Moreover if ¢ = a then there is a
critical point at every sphere BBD ={u€eH: tul =p} for r < p < R. See also Willem
[15) for an interesting proof of this fact. Rabinowitz in [3] proved a stronger form of
the dual Mountain Pass Theorem, which provides an improved form of the Pucci-~Serrin

result. In his result, Rabinowitz replaces condition (6) by the much weaker condition

inf{®(u) : Tub = r} > &(0) > d(e) with flel > r, and proves that there is a critical

point at the level

b = sup inf &(u) ,
Ueo uedu

where 0= {UCH | U isopen, 0 €U, e € U}. Moreover if b = 8(0) then there is a
critical point at BBr. The proposition below is essentially this result, but its proof

differs from the one given in ([3].

-7~




1
Proposition S. let ¢ @ C (H,R) satisfy the Palais Smale condition. Suppose that

M inf{é(u) : tul = r} > max{$(0), &(e)} ,

where 0 < r < lel. Then ¢ has a critical point uq # 0.

i Proof. It suffices to consider the case where we have equality in (7), since the case of
inequality is the usual Mountain Pass Theorem. (i) First suppose that &(0) < &(e). Then
either e 1is a local minimum (and we are through) or there is an e' near e such that
®(e') < inf{®#(u) : lul = r}. In the latter case we use the usual Mountain Pass Theorem to
conclude. (ii) Next suppose that ¢&(0) = ®(e). As in (i) above either e is a local
minimum or there is e' near e with &(e') < $(0). (iii) So we may always suppose from
now one that ¢&(0) > ®(e). Also we may assume that

¢(0) = inf & .

B
r

Otherwise we would apply the usual Mountain Pass Theorem to conclude. (iv) Nos

0 <p <r. We claim that either there is an a > ¢(0) such that

inf{®(u) : Jul = p} > a or there is a critical point of & on aBD' If the first
alternative occurs we apply the usual Mountain Pagss Theorem and the proof is complete. To
prove the claim, let us suppose that there is no such an a. Then there are u e BBD

such that

S(u ) < 9(0) + -
n n

Consider the ring R={u €@ H : 0 <p -n < lul € p+n < r} for an appropriate n > 0.
Now use Ekeland variational principle for & in the ring. Thus there are Va € R such
that

1
(8) O(Vn) < O(un)y |Vn - unl < gl
(v ) € &(u) + 1 flu-vil, VuéeRrR.
n n n

For large n, va is in the interior of R. So take in (8) u = va + tu, where t € R

is small and u is arbitrary with 1ul = 1. Using Taylor's formula to expand O(vn + tu)
1

about v, and letting t * 0 we obtain lO'(vn)l < e Finally using the Palais-Smale

condition we conclude that Yot Y% e 3Bp and u; 1is a critical point of ¢. O

-8~
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3. APPLICATION TO ELLIPTIC PROBLEMS.

Since the abstract results presented in the previous section allow us to treat a
larger class of second order elliptic problems we start anew the abstract setting of the
differential problem. We observe that for the use of variational methods and the existence
of H;-solutions a great deal less of regularity is required from both the nonlinearity g
and the linear part of the equation. We also remark that the basic assumption is the
existence of an ordered pair of a subsolution and a supersolution. $o besides the
Ambrosetti-Prodi problem stated in the Introduction we can treat other problems where such

a pair is produced.

Consider the second order elliptic operator

N
u=- J Dj(aij(X)Diu) + c{x)u
i,3=1

N/2

where aij e Lﬁ(ﬂ), celL (@) and c(x) > 0 a.e. Ellipticity here means that there is

1 1
(x)Eiij > clElz. Let a : HO x Ho + R be the bilinear

a congtant ¢ > 0 such that E a,

3
form associated to L and defined by

afu,v) = I z aij(X)Di“Djv + c(x)uv .
We assume that g : € X R+ R 1is a Carathéodory function such that
[+4
lgtx,8)] € clal + d(x)

2N/ (N+2)

where 0 = (N+2)/(N-2) and d €L if N >3, or elP and 1<p, 0 ¢<w if

N = 2. We then consider the Dirichlet problem

alu,v] = [ glx,ulv, V + € H;

(9)

1
ue HO

1
Let & : Ho +# R be the corresponding Buler-Lagrange functional defined by

1
(10) o(u) = 3 afu,ul - [ G(x,u)
s 1 1/2
where G(x,8) = f q{x,E)AE. We renorm Ho with the norm lul = alu,u) / ; denote the
0
-9~




corresponding inner product by <¢,*> : <u,v> = alu,v]. Clearly ¢ is C1 and its

derivative at u is given by

<®'(u),v> = <u,v> - f g{x,u)v, vve H; .

We then see that the critical points of ¢ are precisely the solutions of (9). Let us

1 1
define the map K : H0 e Ho by

1
<Ku,v> = f glx,u)v, Vve Ho .

Theorem 6. Assume conditions on g that quarantee that & defined in (10) satisfies the

1
Palaisg-Smale condition. Suppoge that there exist a subsolution w € H and a

0
supersolution W € H; of (9) such that w €< W; that is,
1
(1N alw,v] € [ glx,w)v and a(W,v] > [ glx,Wv, Vv e Ry, v 0.

Assume also that g(x,s) is a nondecreasing function of 8 for w(x) € 8 € W(x). Then

1
there exists u, € H) such that u, e [w,W), o(uo) = 4inf ¢ and 0'(uo) =0
[w,W]

[Consequently uy is_a solution of (9)].

Remarks. 1) We use the notation (w,W] to denote the set of u € H; such that
wix) € u{x) € Wix) for x €0 (a.e.).
2) The set of assumptions on g prescribed at the Introduction are sufficient to

guarantee that ¢ satisfies the Palais-Smale condition.
Proof. (i) C = {w,W] is a closed and convex subset of H;. (11) X maps C into C.
Indeed for u € {(w,W), we have gi(x,w) € g(x,u) € g(x,W), which implies

alw,v] € afKu,v] € af{w,v] for all v e H;, v » 0. By the Maximum Principle (see Gilbarg-
Trudinger (16, p. 168]) it follows that w € Ku € W, (iii) ¢ is bounded below in C.
Indeed, if u € {w,W] then Ju{x)] € |w(x}] + |Ww(x)|, which implies that

tal N/ (N=2) < C. So f IG(x,u)] € ¢, which proves the claim. (iv) Finally the
conciusion of the theorem follows readily from Proposition 3. O

Corollary 7. Same hypotheses of Theorem 6, except the assumption that g is nondecreasing

in s for w{x) € s € W(x). Assume however that g is locally lipschitzian and w and

W are continuous in Q. Then the same conclusions of Theorem 6 hold.

Proof. 1In view of the hypotheses, there is a positive constant M such that the

function gM(x,s) : g{x,8) + Ms is nondecreasing in s for w{x) € 8 € W(x). The

=10~




Dirichlet problem

1
aM[u,v] - f gn(x,u)v, yve Ho

(12)

1
u e Ho

where a“[u,v] = alu,v] + M f uv, has the same solutions as problem (9). Moreover the

functional associated to (12) is the same as ¢. And we may apply Theorem 6 to problem

12). a

Theorem 8. Assume conditions on g that guarantee that ¢ satisfies the Palais-Smale

condition and &' is of type s*. Suppose that g is locally lipschitzian and the

coefficients of L are such that the results of the Lp-tqgularity theory hold true.

1,a
Assume also that w € C"G is a strict subsolution and W € ¢’ is a strict

supersolution, with w € W. Then there exists u; € [w,W] such that O'(uo) = 0 and

up is a local minimum of 9. That is, there exists € > 0, such that
®(u ) = inf []

0
Be(“o)

Remark. The Ambrosetti-Prodi problem stated in the Introduction satisfies all the
hypotheses of the above theorem.

Proof. From Theorem 6 it follows that there is U, e [w,W] such that 0'(uo) =0 and
(13) O(uo) = inf ¢ .

[w,W]

1,a
It can be shown that u, ec ;3 the first step in the proof of this fact uses arguments

from Brézis-Kato [9] to show that u, € tP for p > 2N/(N-2), see {6]. Then a bootstrap
argument is used. Suppose by contradiction that u, is not a local minimum. Then for

every £ > 0 there is u, e BE(GET such that O(UE) < O(uo). By Proposition 4 there is

v € Be(“o) such that

€
(14) (v ) = inf ® € d(u ) < ¢(u,) , and
BC(uO)

(15) 0'(v€) = Xe(vE - “0)’ with Xe <0 .




1,a
, we prove that Ve ec’ . The

1
By the same arguments used to establish that u, ec @

strong maximum principle and the fact that w and W are not solutions imply that

v, € [w,W] for gmall €. Then (14) contradicts (13). O

1
Corollary 9. In addition to all the hypotheses of Theorem 8, assume that there is v &€ Ho

gsuch that fvl > max{liwl,IWl} and ¢&(v) € min{®(w),0(W)}. Then the Dirichlet problem (9)

has two solutions.

Remark. The existence of such a v 1is trivial in the case that & is not bounded below
1

in Ho. This is always the case for superlinear problems.

Proof. From Theorem 8 it follows the existence of the first solution, which is a local

minimun of ¢. The second solution is a consequence of Proposition 5. 0
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